

ON A DIVISION PROPERTY OF CONSECUTIVE INTEGERS

BY
YAIR CARO

ABSTRACT

Pillai and Brauer proved that for $m \geq 17$ we can find blocks B_m of m consecutive integers such that no element in the block is pairwise prime with each of the other elements. The following basic generalization is proved: For each $d > 1$ there is a number $G(d)$ such that for every $m \geq G(d)$ there exist infinitely many blocks B_m of m consecutive integers, such that for each $r \in B_m$ there exists $s \in B_m$, $(r, s) \geq d$.

Introduction

In the year 1940 the Indian Mathematician S. Pillai [3] formulated the following question: Let B_m be an arbitrary block of m positive consecutive integers; can we find an integer $r \in B_m$ such that for all $s \in B_m$, $(s, r) = 1$.

Pillai proved that this is true for $2 \leq m \leq 16$, but he proved also that for $17 \leq m \leq 429$ there exist infinitely many blocks B_m in which for any $r \in B_m$ there exists $s \in B_m$ such that $(r, s) \geq 2$ ($s \neq r$).

In the year 1941 A. Brauer [1] proved that for any $m \geq 17$ there exist infinitely many blocks B_m in which for any $r \in B_m$ there exists $s \in B_m$ such that $(r, s) \geq 2$ ($s \neq r$).

In the year 1969 R. J. Evans [2] gave a simpler proof for $m \geq 17$. Here I prove the stronger result which is:

Let $d \geq 1$ be any integer. There exists a number $G(d)$ such that for $m \geq G(d)$ infinitely many blocks B_m exist in which for any $r \in B_m$ there exists $s \in B_m$ such that $(r, s) \geq d$.

I prove also a theorem of this kind concerning more general series.

Received May 30, 1978

LEMMA. Let $d \geq 1$ be a given integer. A number $N(d)$ exists such that for $n/2 \geq N(d)$ there are at least $4d - 5$ primes between $n/2$ and $3n/4$.

PROOF. This follows immediately from the prime number theorem by which we can show that $\lim_{n \rightarrow \infty} (\Pi(3n/4) - \Pi(n/2)) = \infty$.

THEOREM 1. Let $d > 1$ be a given integer. A number $G(d)$ exists such that for $m \geq G(d)$ infinitely many blocks B_m exist such that for $r \in B_m$ there exists $s \in B_m$ such that $(r, s) \geq d$.

PROOF. Denote by p_d, \dots, p_t the prime numbers which are not smaller than d and smaller than $n/2$ while $n/2 \geq N(d)$, that is, $d \leq p < n/2$ for this prime.

Denote by p_1, \dots, p_k the prime numbers smaller than d which satisfy $(p_i, d-1) = 1$, $i = 1, \dots, k$.

Denote by e_i the smallest integer such that $p_i^{e_i} > d-1$, $i = 1, \dots, k$. Let $R = (d-1)^2 \prod_{i=1}^k p_i^{e_i}$.

Denote by q_1, \dots, q_{4d-5} the first primes which satisfy $n/2 \leq q_j \leq 3n/4$, $j = 1, \dots, 4d-5$. Now consider the $4d-4$ congruences:

$$(1) \quad x \equiv -(d-1) \pmod{q_1},$$

$$(2) \quad x \equiv -(d-2) \pmod{q_2},$$

.....

$$(d-1) \quad x \equiv -1 \pmod{q_{d-1}},$$

$$(d) \quad x \equiv 1 \pmod{q_d},$$

.....

$$(2d-2) \quad x \equiv (d-1) \pmod{q_{2d-2}},$$

$$(2d-1) \quad x \equiv -q_1 \pmod{q_{2d-1}},$$

.....

$$(4d-5) \quad x \equiv -q_{2d-3} \pmod{q_{4d-5}},$$

$$(4d-4) \quad x \equiv 0 \pmod{R p_d \cdots p_t}.$$

Since the congruences are modulo pairwise prime integer, then by the Chinese Remainder Theorem infinitely many solutions exist.

Consider the following block B_m of $M(d)$ consecutive integers:

$$\{x - [n/4], \dots, x - d, x - (d-1), \dots, x - 1, x, x + 1, \dots, x + q_1, \dots$$

$$\dots, x + q_2, \dots, x + q_{2d-2} - 1\}.$$

We notice that $M(d) > 3n/4$.

It will be shown that for any $r \in B_m$ there is $s \in B_m$ such that $(r, s) \geq d$. If $r = x$ we choose $s = x + d$; clearly $d \mid x$ and $d \mid x + d$ therefore $(r, d) \geq d$.

For $1 \leq j \leq d - 1$ we consider the following cases:

- (1) If $r = x + j$ we choose $s = x + q_{d-j} + j$, $s \in B_m$, $(s, r) = q_{d-j} > d$.
- (2) If $r = x - j$ we choose $s = x + q_{d+j-1} - j$, $s \in B_m$, $(s, r) = q_{d-j+1} > d$. Since $q_{d-j} + j < q_{2d-1}$, $q_{d+j-1} - j < q_{2d-1}$ it follows that both $s \in B_m$ in both cases.
- (3) If $r = x + q_j$, $j = 1, \dots, 2d - 3$ we choose $s = x - (q_{2d+j-2} - q_j)$. Since $[n/4] > q_{2d+j-2} - q_j$ it follows that $s \in B_m$ and $(r, s) = q_{2d+j-2} > d$.
- (4) If $r = x \pm j$ when j is not of the cases described above, then we choose $s = x$ and $(r, s) \geq d$.

Therefore for each $r \in B_m$ there exists $s \in B_m$ such that $(r, s) \geq d$. We also notice that we can make the left side of B_m far smaller. We can replace $x - [n/4]$ by $x - q_1 + 1$ without changing the truth of the theorem; that is, we shall get $n/4$ numbers greater than $M(d)$ for which the theorem holds. Now for $n_1 > n$, for which $q_2 \geq n_1/2 > q_1$, we can take the block

$$\{x - [n_1/4], \dots, x - d, \dots, x - 1, x, x + 1, \dots, x + q_{2d-1} - 1\}$$

which is constructed in the same manner as the first block. The length of this block is $q_{2d-1} + [n_1/4] < q_{2d-2} + q_1 - 1$, which was the length of the largest block we had. We can make the left side of this block smaller by replacing $x - [n_1/4]$ with $x - q_2 + 1$. The length of the largest block is $q_{2d-1} + q_2 - 1 > q_{2d-2} + q_1 - 1$. Repeating this argument we get the truth of the theorem for $m \geq M(d)$.

DEFINITION. Let $\{A_n\}_{n=1}^{\infty}$ be a non-decreasing series of positive integers. We say that A_n is a perfect series if for any positive integers n, k , $A_n | A_{kn}$.

THEOREM 2. Let $\{A_n\}_{n=1}^{\infty}$ be a perfect series such that $\lim_{n \rightarrow \infty} A_n = \infty$. Then for any given integer $d > 1$ there exists a number $k(d)$ such that for $m \geq k(d)$ there are infinitely many blocks B_m of m consecutive terms of the series such that for each $A_r \in B_m$ there exists $A_s \in B_m$ and $(A_r, A_s) \geq d$.

PROOF. From Theorem 1 we know that we can find blocks B_m of m consecutive integers such that for each $r \in B_m$ there is $s \in B_m$ and $(r, s) \geq d$. Suppose that the block B_m is $n, n + 1, \dots, n + m - 1$; we consider the term $A_n, A_{n+1}, \dots, A_{n+m-1}$. For each $A_r \in B_m$ there is $A_s \in B_m$ such that $(A_r, A_s) \geq d$. Since $A_n \rightarrow \infty$ then for a sufficiently large b , $A_b \geq d$, hence $(A_r, A_s) \geq A_b \geq d$.

COROLLARY. The Fibonacci series is a perfect series, since $F_1 = 1$, $F_2 = 1$,

$F_3 = 2$. It follows from Theorem 2 that for $m \geq G(3)$ there exists a block B_m of m consecutive Fibonacci numbers such that for each $F_r \in B_m$ there is $F_s \in B_m$, $(F_r, F_s) \geq F_3 = 2$.

We notice that $A_n = 2^n - 1$, $A_n = (10^n - 1)/9$ are also perfect series.

Upper bounds for $G(d)$ and $g(d)$

It follows from the proof of Theorem 1 that we can change the restriction $\Pi(3n/4) - \Pi(n/2) \geq 4d - 5$ to $\Pi(n) - \Pi(n/2) \geq 4d - 5$, where now the primes q_1, \dots, q_{4d-5} are the first to satisfy $n/2 \leq q_i \leq n$, $i = 1, \dots, 4d - 5$.

For any n for which $\Pi(n) - \Pi(n/2) \geq 4d - 5$ the arguments of the proof can be adopted, but we cannot enlarge the length of the blocks. Therefore it might be that for some $m < G(d)$ there are blocks B_m with the required property.

Let $g(d)$ denote the smallest number for which there is a block $B_{g(d)}$ such that for each $r \in B_{g(d)}$, $\exists s \in B_{g(d)}$ and $(r, s) \geq d$.

THEOREM 3.

$$d \geq 2, \quad g(d) < 45d \lg d,$$

$$d \geq 2, \quad G(d) < 54d \lg d.$$

PROOF. We use two inequalities of Rosser-Schoenfeld [4]:

- (1) For $x \geq 21$, $\Pi(2x) - \Pi(x) > 3x/(5 \lg x)$;
- (2) For $x \geq 67$, $x/(\lg x - 0.5) < \Pi(x) < x/(\lg x - 1.5)$.

For $g(d)$ it is sufficient to consider the inequality $\Pi(n) - \Pi(n/2) \geq 4d - 5$; put $n = 2x$, $n/2 = x$: we get

$$\Pi(2x) - \Pi(x) > 3x/(5 \lg x) \geq 4d - 5;$$

put $x = 15d \cdot \lg d$ we find

$$\frac{9(d \lg d)}{\lg(15d \cdot \lg d)} \geq 4d - 5$$

which is true for $d \geq 2$. Hence $n = 2x = 30d \cdot \lg d$, $g(d) \leq 3n/2 = 45d \lg d$.

For $G(d)$ we consider $\Pi(3n/4) - \Pi(n/2) \geq 4d - 5$. It is clear that for $n/2 \geq 67$,

$$\Pi(3n/4) - \Pi(n/2) \geq \frac{3n}{4(\lg(3n/4) - 0.5)} - \frac{n}{2(\lg(n/2) - 1.5)}$$

$$\begin{aligned}
&= \frac{3n}{4(\lg n + \lg(3/4) - 0.5)} - \frac{2n}{4(\lg n - \lg 2 - 1.5)} \\
&> \frac{3n}{4 \cdot \lg n} - \frac{2n}{4(\lg n - 2.2)} \\
&> \frac{n}{4.51 \lg n}.
\end{aligned}$$

Therefore we consider

$$\frac{n}{4.51 \lg n} \geq 4d - 5.$$

For $n = 54d \lg d$ we get

$$\frac{12d \lg d}{\lg(54d \lg d)} \geq 4d - 5,$$

which is true for $d \geq 3$.

We easily verify that this holds for $d = 2$. Consequently $G(d) \leq n = 54d \lg d$. Indeed the upper bound for $g(d)$ and $G(d)$ can be reduced further, as one can see from the following statement:

COROLLARY.

$g(3) \leq 81$ since $27 < 29, 31, 37, 41, 43, 47, 53 < 54$,

$g(4) \leq 153$ since $51 < 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101 < 102$,

$g(5) \leq 228$ since there are 15 primes between 76 and 152,

$g(6) \leq 288$ since there are 19 primes between 96 and 192.

REFERENCES

1. A. Brauer, *On a property of k consecutive integers*, Bull. Amer. Math. Soc. **47** (1941), 328–331.
2. R. J. Evans, *On blocks of N consecutive integers*, Amer. Math. Monthly **76** (1969), 48–49.
3. S. Pillai, *On m consecutive integers — I*, Proc. Indian Acad. Sci. Sect. A **11** (1940), 6–12.
4. J. B. Rosser and L. Schoenfeld, *Approximate formulas for some functions of prime numbers*, Illinois J. Math. **6** (1962), 64–94.