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ON A DIVISION PROPERTY OF
CONSECUTIVE INTEGERS

BY
YAIR CARO

ABSTRACT

Pillai and Brauer proved that for m =17 we can find blocks B, of m
consecutive integers such that no element in the block is pairwise prime with
each of the other elements. The following basic generalization is proved: For
each d >1 there is a number G(d) such that for every m = G(d) there exist
infinitely many blocks B,, of m consecutive integers, such that for each r € B,,
there exists s € B, (r,s)= d.

Introduction

In the year 1940 the Indian Mathematician S. Pillai [3] formulated the
following question: Let B,, be an arbitrary block of m positive consecutive
integers; can we find an integer r € B,, such that for all s € B,,, (s,r)=1.

Pillai proved that this is true for 2=m =16, but he proved also that for
17 = m =429 there exist infinitely many blocks B,, in which for any r € B,, there
exists s € B,, such that (r,s)=2 (s#r).

In the year 1941 A. Brauer [1] proved that for any m = 17 there exist infinitely
many blocks B,. in which for any r € B,, there exists s € B,, such that (r,s)=2
(s#r).

In the year 1969 R. J. Evans [2] gave a simpler proof for m = 17. Here I prove
the stronger result which is:

Let d = 1 be any integer. There exists a number G (d) such that for m = G(d)
infinitely many blocks B,, exist in which for any r € B,, there exists s € B,, such
that (r,s)= d.

I prove also a theorem of this kind concerning more general series.
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LemMa. Let d =1 be a given integer. A number N(d) exists such that for
n/2z= N(d) there are at least 4d — 5 primes between n/2 and 3n/4.

Proor. This follows immediately from the prime number theorem by which
we can show that lim,_..(II(3n/4)—TI(n/2)) = .

THeorREM 1. Let d > 1 be a given integer. A number G(d) exists such that for
m = G(d) infinitely many blocks B,. exist such that for r € B,, there exists s € B,,
such that (r,s)z d.

Proor. Denote by p,, - - -, p. the prime numbers which are not smaller than d
and smaller than n/2 while n/2= N(d), that is, d = p < n/2 for this prime.

Denote by p,, -+, p« the prime numbers smaller than d which satisfy
p,d-1)=1,i=1,--- k.

Denote by e; the smallest integer such that pi>d—1, i=1,--- k. Let
R =(d- 17T, pi

Denote by qu,- -, qsa—s the first primes which satisfy n/2=q, =3n/4, j =
1,+--,4d — 5. Now consider the 4d — 4 congruences:

(1) x=-(d-1) (mod q),

@) x=-(d-2) (mod g»),

d-1) x=-1 (mod g.-),

(d) x=1 (mod q.),

(2d - 2) X = (d - 1) (mOd ¢I2d~2),

2d-1) x=-¢q, (mod qz4-1),

(4d~5) x =~ qaa—s (mod Gus-s),

4d—4) x=0 (mod R ps---p.).

Since the congruences are modulo pairwise prime integer, then by the Chinese
Remainder Theorem infinitely many solutions exist.
Consider the following block B.. of M(d) consecutive integers:

{x-[n/4), - x-dx—-d-1),--,x—-Lx,x+1,- -, x+qy," -

X+ qa X+ Gaaa— 1)
We notice that M(d)>3n/4.
It will be shown that for any r € B,, there is s € B, such that (r,s) = d. If r = x
we choose s = x + d; clearly d|x and d|x + d therefore (r,d)= d.
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For 1 =j=d—1 we consider the following cases:

(1) fr=x+j we choose s =x+ qu-j +j, s € Ba, (5,1) = qu-; > d.

(2) If r=x—j we choose s = x + qu+j-1— J, § € B,, (5, 7) = qa—j+:1 > d. Since
Ga-i +J < Gaa-1, Gasj-1— | < qaa-1 it follows that both s € B,, in both cases.

B3I r=x+gq, j=1,---,2d -3 we choose s=x—(qz4+j-2— ¢q;). Since
[n/4) > q2a+;-2— q; it follows that s € B, and (r,5) = qau+;—2 > d.

(4) If r = x =] when j is not of the cases described above, then we choose
s=x and (r,s)= d. '
Therefore for each r € B, there exists s € B,, such that (r, s) = d. We also notice
that we can make the left side of B, far smaller. We can replace x — [n/4] by
x — g, + 1 without changing the truth of the theorem; that is, we shall get n/4
numbers greater than M(d) for which the theorem holds. Now for n, > n, for
which ¢.= n,/2 > q,, we can take the block

{x—[n1/4]’.“’x_da"',x—lyx’x-f-la"'yx+q2d—1—1}

which is constructed in the same manner as the first block. The length of this
block is gza-1 + [1:/4] < g2a-2+ q: — 1, which was the length of the largest block
we had. We can make the left side of this block smaller by replacing x — [n,/4]
with x — g, + 1. The length of the largest block is gza-1+ g2 — 1> goaat g1 — 1.
Repeating this argument we get the truth of the theorem for m = M(d).

DerINTioN.  Let {A,}7-: be a non-decreasing series of positive integers. We
say that A, is a perfect series if for any positive integers n, k, A, | A

THEOREM 2. Let {A,};-1 be a perfect series such that lim, ... A, = . Then for
any given integer d > 1 there exists a number k (d) such that for m = k(d) there
are infinitely many blocks B,, of m consecutive terms of the series such that for each
A, € B,, there exists A; € B,, and (A, A,)=d.

Proor. From Theorem 1 we know that we can find blocks B, of m
consecutive integers such that for each r € B,, there is s € B, and (r,s)Z b.
Suppose that the block B,, is n,n+1,---,n+ m — 1; we consider the term A,,
Aui,* o, Asem-r. For each A, € B,, there is A, € B,, such that (A, A,) = A,.
Since A, — « then for a sufficiently large b, A, Z d, hence (A, A,)= A, = d.

CoroLLarY. The Fibonacci series is a perfect series, since Fi=1, F,=1,
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Fy=2. It follows from Theorem 2 that for m = G (3) there exists a block B,, of m
consecutive Fibonacci numbers such that for each F, € B,, there is F, € B,
(F,F)z F,=2.

We notice that A, =2"—1, A, = (10" — 1)/9 are also perfect series.

Upper bounds for G(d) and g(d)

It follows from the proof of Theorem 1 that we can change the restriction
NQ@3n/4)~T(n/2)z4d -5 to II(n)—I1(n/2) = 4d — 5, where now the primes
g1, " ", qaa-s are the first to satisfy n/2=q, =n, i=1,---,4d - 5.

For any n for which II(n)—I1(n/2) = 4d — 5 the arguments of the proof can be
adopted, but we cannot enlarge the length of the blocks. Therefore it might be
that for some m < G(d) there are blocks B, with the required property.

Let g(d) denote the smallest number for which there is a block B, such that
for each r € By, s € B,y and (r,s)= d.

THEOREM 3.
dz=2, g(d)<45dlgd,
dz?2, G(d)<54d1gd.

Proor. We use two inequalities of Rosser-Schoenfeld [4]:

(1) For x =21, TI2x)~TI(x)>3x/(5lgx);

(2) For x =67, x/(lgx —0.5) <II(x)<x/(lgx — 1.5).
For g(d) it is sufficient to consider the inequality II(n)—I1(n/2)= 4d - 5; put
n=2x, nf2=x: we get

I2x)-TI(x)>3x/(5lgx)=4d - 5;
put x = 15d -lgd we find

9dlgd) _

g(15d - 1gd) = 1473

which is true for d = 2. Hence n =2x =30d -lgd, g(d)=3n/2=45d1gd.
For G(d) we consider [1(3n/4) —1(n/2) = 4d — 5. It is clear that for n/2 = 67,

3n _ n
4(lg(3n/4)—0.5) 2(lg(n/2)—1.5))

@3n/4)-N(n2)=
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_ 3n _ 2n

4(lgn +1g(3/4)—0.5) 4(lgn—1g2-1.5)
> 3n 2n

4-1gn 4(lgn-2.2)

n
Za5llgn
Therefore we consider
n
45lgn =4d - 5.

For n =54d1gd we get

12d1gd >4d—5
lg(54dlgd) ’
which is true for d =z 3.
We easily verify that this holds for d = 2. Consequently G(d)=n = 54d lgd.
Indeed the upper bound for g(d) and G (d) can be reduced further, as one can
see from the following statement:

COROLLARY.

g(3) =81 since 27<29, 31, 37, 41, 43, 47, 53 <54,

g(4)=153 since 51<53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101 < 102,
g(5) =228 since there are 15 primes between 76 and 152,

g(6) =288 since there are 19 primes between 96 and 192.
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